Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography.

نویسندگان

  • G Paternostro
  • P G Camici
  • A A Lammerstma
  • N Marinho
  • R R Baliga
  • J S Kooner
  • G K Radda
  • E Ferrannini
چکیده

Patients with coronary artery disease or heart failure have been shown to be insulin resistant. Whether in these patients heart muscle participates in the insulin resistance, and whether reduced blood flow is a mechanism for such resistance is not known. We measured heart and skeletal muscle blood flow and glucose uptake during euglycemic hyperinsulinemia (insulin clamp) in 15 male patients with angiographically proven coronary artery disease and chronic regional wall motion abnormalities. Six age- and weight-matched healthy subjects served as controls. Regional glucose uptake was measured by positron emission tomography using [18F]2-fluoro-2-deoxy-D-glucose (FDG), blood flow was measured by the H2(15)O method. Myocardial glucose utilization was measured in regions with normal perfusion and wall motion as assessed by radionuclide ventriculography. Whole-body glucose uptake was 37+/-4 micromol x min(-1) x kg(-1) in controls and 14+/-2 mciromol x min(-1) x kg(-1) in patients (P = 0.001). Myocardial blood flow (1.09+/-0.06 vs. 0.97+/-0.04 ml x min(-1) x g(-1), controls vs. patients) and skeletal muscle (arm) blood flow (0.046+/-0.012 vs. 0.043+/-0.006 ml x min(-1) x g(-1)) were similar in the two groups (P = NS for both). In contrast, in patients both myocardial (0.38+/-0.03 vs. 0.70+/-0.03 micromol x min(-1) x g(-1), P = 0.0005) and muscle glucose uptake (0.026+/-0.004 vs. 0.056+/-0.006 micromol x min(-1) x g(-1), P = 0.005) were markedly reduced in comparison with controls. In the whole dataset, a direct relationship existed between insulin-stimulated glucose uptake in heart and skeletal muscle. Patients with a history of myocardial infarction and a low ejection fraction are insulin resistant. This insulin resistance affects both the myocardium and skeletal muscle and is independent of blood flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan

Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...

متن کامل

Insulin resistance in patients with cardiac hypertrophy.

OBJECTIVE Animal studies suggest that left ventricular hypertrophy might be associated with insulin resistance and alterations in glucose transporters. We have previously demonstrated myocardial insulin resistance in patients with post-ischemic heart failure. The aim was to investigate whether myocardial insulin resistance could be demonstrated in human cardiac hypertrophy in the absence of hyp...

متن کامل

Insulin resistance and coronary artery disease in non-diabetic patients: Is there any correlation?

Background: Cardiovascular diseases are the most common causes of death in the world and type 2 diabetes is one of them because it is highly prevalent and doubles heart disease risk. Some studies suggest that insulin resistance is associated with coronary artery disease in non-diabetics. The aim of this study was to evaluate the association of insulin resistance (IR) and coronary artery disease...

متن کامل

Functional imaging of skeletal muscle glucose metabolism by 18FDG PET to characterize insulin resistance in patients at high risk for coronary artery disease

Insulin resistance is associated with several coronary risk factors and is thought to play a critical role for the development of coronary artery disease. Insulin resistance has several causes, including an impaired skeletal muscle glucose utilization rate (SMGU), reduced peripheral blood flow, and altered fatty tissue metabolism, with SMGU being considered the most important. Nonetheless, insu...

متن کامل

Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction.

AIMS Whole body and myocardial insulin resistance are features of non-insulin-dependent diabetes mellitus (NIDDM) and left-ventricular dysfunction (LVD). We determined whether abnormalities of insulin receptor substrate-1 (IRS1), IRS1-associated PI3K (IRS1-PI3K), and glucose transporter 4 (GLUT4) contribute to tissue-specific insulin resistance. METHODS AND RESULTS We collected skeletal muscl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 98 9  شماره 

صفحات  -

تاریخ انتشار 1996